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In this picture you see on the left side two possible perceptron-nets which are able to process the XOR-problem. On the right side a truth 
diagram is shown which is used by a perceptron algorithm for classification. In the middle you see a cute little robot which is doing a parachute 
jump as it is interpreted by DALL-E 2.  

 

A collection of lessons for introducing the basic concepts of 

 artificial intelligence / neural nets in school classes.  

Target audience: between 14 and 18 years. 
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A selection of some images generated by DALL-E 2, but which could not be used appropriately in this document.  
  The simple but beautiful intelligence that can be seen in the images have an inspiring effect on the imagination:  
  What creative and intelligent achievements will artificial intelligences be capable of in the future? 
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Thank you! 
 

to plan and create this lesson, inspiration from many different authors was necessary. Each of these authors has 

developed their own ideas to make this complex and fascinating field a bit more understandable. Therefore, their 

work should be acknowledged here: 

 

Youtube-Channels 
Author Title / Channel Link 

Josh Starmer Statquest https://www.youtube.com/c/joshstarmer 

Luis Serrano Luis Serrano Academy https://www.youtube.com/c/LuisSerrano 

Brandon Rohrer Brandon Rohrer https://www.youtube.com/c/BrandonRohrer 

Grant Sanderson 3Blue1brown https://www.youtube.com/c/3blue1brown 

Patrick Loeber Python Engineer https://www.youtube.com/c/PythonEngineer 

 

Books 
Author Title Publisher 

Andrew W. Trask (2019) Grokking Deep Learning Manning Publications 

Luis Serrano (2021) Grokking Machine Learning Manning Publications 

Michael Taylor (2017) The Math of Neural Networks Blue Windmill Media 

Michael Taylor (2017) Deep Learning: A visual introduction for beginners Blue Windmill Media 

 

Simulations 
Visualisations, Demonstrations, Simulations Topic 

https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html  CNN-Demo 

https://poloclub.github.io/cnn-explainer/ CNN-Explainer 

https://lecture-demo.ira.uka.de/convolution-demo/ Convolution Demo 

https://playground.tensorflow.org/  FAMOUS NeuralNetwork Demo 

https://lecture-demo.ira.uka.de/neural-network-demo/ Perceptron Demo 

https://www.mladdict.com/neural-network-simulator NeuralNet Simulator 

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html CNN-Demo 

https://anhcoi123.github.io/neural-network-demo/ NeuralNet Simulator 

http://alexlenail.me/NN-SVG/LeNet.html Drawing NNets in different styles 

https://editor.aifiddle.io/ Build NN interactively in Browser 

https://iludis.de/XOR_Perceptron/index.html NN-Simulator for XOR 

https://iludis.de/XOR_Perceptron2/index.html NN-Simulator for XOR, Variant 2 

https://iludis.de/PerceptronArea/index.html Simple Perceptron Simulator 

https://iludis.de/Perceptron/index.html Perceptron with Gradient decent 

 

 

 

  

https://www.youtube.com/c/joshstarmer
https://www.youtube.com/c/LuisSerrano
https://www.youtube.com/c/BrandonRohrer
https://www.youtube.com/c/3blue1brown
https://www.youtube.com/c/PythonEngineer
https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
https://poloclub.github.io/cnn-explainer/
https://lecture-demo.ira.uka.de/convolution-demo/
https://playground.tensorflow.org/
https://lecture-demo.ira.uka.de/neural-network-demo/?preset=Rosenblatt%20Perceptron
https://www.mladdict.com/neural-network-simulator
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://anhcoi123.github.io/neural-network-demo/
http://alexlenail.me/NN-SVG/LeNet.html
https://editor.aifiddle.io/
https://iludis.de/XOR_Perceptron/index.html
https://iludis.de/XOR_Perceptron2/index.html
https://iludis.de/PerceptronArea/index.html
https://iludis.de/Perceptron/index.html
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Lesson 1: Introduction to neural networks: Neuron and Rosenblatt perceptron 
 

 

 
 
 
 
 
 
 
 

 
 

 
 
What students should learn 
In 1958, the psychologist Frank Rosenblatt, who was also a computer scientist, had a brilliant idea: could we copy the 

principle of learning from biology and reproduce it in machine form? The principle of the artificial neuron was born.  

 

Students learn the structure of natural neurons and their connections by means of an insight into biology. Learning 

takes place by adapting the neuron-neuron connections. By interconnecting many neurons, emergent behavior 

develops: In interaction, the whole becomes more than the sum of all parts. Artificial neurons are derived from their 

natural templates.  

In the process, perceptons as simple binary classifiers are created. By connecting many neurons (multilayer 

perceptons), increasingly complex patterns can be learned and recognized. Learning takes place on the basis of 

adjustments of the weighting factors. 

 

 

 

Possible students’ activities  
Students hear the principle of the biological neuron in a short lecture from the teacher. The emphasis is on the 
principle, how the neuron is working – and less on the technical terminology. This working principle is abstracted 
to introduce the perceptron in a questioning-developing section of the lesson teacher and students: 
 
The teacher works out the perceptron principle with the students as an abstraction of the natural neuron. Each 
functional unit from biology is reflected in the model: signal recording, signal processing and the neurons decision 
whether it fires or not.  
 

 

 

  

DALL-E 2 
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Signal Direction 

Axon:  
Output signal of neuron 

Dendrites:  
Input interface of the neuron 

Axon terminal (synapse):  
Forwarding the signal of neuron 

Cell body with nucleus:  
neuron signal acquisition and processing 

Part I: The biological neuron in living beings 
The brain - the organ with which we think - is made up of many 'thinking cells' called neurons.   

These neurons have a typical, common structure:  

a) In an anterior part of the neuron cell (the cell body with nucleus and dendrites), signals from other neurons 

are recorded and added up.  

 

b) If these summarized signals from other nerve cells are strong enough, i.e., if a certain threshold value of 

excitation is exceeded, the neuron fires. A single neuron already makes a decision: If signals arrive, the 

neuron fires or not (possibly with different intensity). These are the reaction possibilities that a neuron has. 

 

c) When this is the case, a signal is conducted via a signal line (the axon),  

 

d) which is then via the Axon terminals (called Synapses) transmitted to further neurons.  

 

e) In this way, a signal has a certain direction:  

from the input, it is forwarded under the threshold condition to further, downstream neuron levels. 
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Part II: Connecting biological neurons to neural nets 

The decision-making freedom of a single neuron becomes part of a whole network of decisions:  
• Many neurons are interconnected in such a way that the output of one neuron becomes the input of the next neuron.  

• And it goes even further: many upstream neurons can form the inputs of a downstream neuron.  

• Thus, a downstream neuron collects the decisions of many predecessors, weights them, and forms its own decision 

from them. 

This is called emergent behavior: A network of connected neurons is thus suddenly capable of intelligent behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The real power of decisions lies in the connections between neurons:  
the synaptic connection between axon ends of the predecessor and dendrites of the successor can be varied:  

• Neuron-neuron connections can be more or less permeable. One speaks of different weights of the connections. 

 

• Learning thereby arises in the adjustment of the weights of the connections 

 

• A neural network can be trained in this way by  

adjusting the weights until the network is able to perform the given task. 

 

Upstream neurons:  
builds signal and forwards it to further neurons 

downstream neurons:  
collect signals from other neurons and add them 
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Part III: the artificial neuron of a machine 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the perceptron is the abstraction of the natural neuron:  
 

• signals from A and B enter the perceptron. These signals are represented by numerical values, mostly as floating points.  

• These signal numerical values from A and B are multiplied by the weighting factors wA and wB. They act like a signal 

amplification or a signal attenuation, depending on the size of the weighting value. 

In the perceptron, these numerical values are used twice: 
 

• In the first step, the weighted numerical values are summed up.  

• Sometimes a bias value is added to the signal sum; it serves as a kind of calibration of the neuron and can be varied 

freely depending on the purpose. 

• In the second step, this sum is further used as input of a so-called activation function. This activation function can take 

on any form; there are no limits to the imagination. To keep the calculations simple, simple functions are often used, 

such as the so-called threshold function. 

• The output of the threshold function is also the output of the entire neuron.  

A 

B 

 

Out 

Weight factors:  
signal values are multiplied by these 

Input signal values  
numerical values as input 

Two steps inside the perceptron:  
adding all weighted values and 

calculating the activation function 

Calibrating the perceptron sum:  
the bias value is added to the input sum 

Output value:  
the outcome of the activation function 

Biological template of the perceptron:  
from this structure the perceptron is derived 
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Lesson 2: Meet the perceptron-algorithm 
 

What students should learn 
Demystification: artificial neurons work in simple steps that are easy to replicate. This will be worked out and 

recalculated on different examples. It is a drill-and-practice lesson designed to give students a picture of how neural 

networks work. 

Possible students’ activities  
Students can become active themselves, since perceptrons work in three easy-to-follow calculation steps: 
1. Incoming signal values are weighted by multiplying them by appropriate factors.  
2. Afterwards, everything is added up: weighted input signals and a correction factor called "bias".  
3. In the final step, a mathematically simple activation function is used to calculate whether the perceptron will 

give an output signal.  
All this is practiced by the students using simple and illustrative examples. 
 

 
Part I: The perceptron calculations follow these steps: 
 
At the very beginning:  

Set a threshold value for the activation function (which is usually zero) 

Then repeat in a loop for making decisions: 

1. Multiply all input values with their weights 

2. Sum all the weighted values to a sum  

3. Activate the output if the sum   is greater than  

the threshold value 0 

For example, we set 

the weights wA = +0.8 and wB = -0.3 (which is negative!)  

In our first calculations we neglect the bias:  bias = 0 

Input 
…multiplied by the 
weights wA and wB 

… and added   

to the sum  
Activation, compare with 

threshold value 0 
Output  ∫  

A = 1 1 · 0.8 = 0.8  = 0.8 - 0.3  
= 0.5 

𝑂𝑢𝑡𝑝𝑢𝑡 = {
0, Σ ≤ 0∗∗

1, Σ > 0
 

1  
since  =  > 0 B = 1 1 · -0.3 = -0.3 

** In simple spoken language this means: 

      If the sum is less than or equal to 0, the output is 0. 

      If the sum is greater than 0, the output is 1. 

 

In short, we can write for the whole perceptron: 
 

  𝑂𝑢𝑡𝑝𝑢𝑡 = {
0,    𝑖𝑓    A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 ≤ 0
1,    𝑖𝑓    A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 > 0

  

 
  

0

1

-1,5 -1 -0,5 0 0,5 1 1,5

activation 
function 

(stepfunction)
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Task 1: calculate the weighted signals, the sum and the output: 
 

Input 
…multiplied by the 
weightswA and wB 

… and added  

to the sum  
Activation Output   ∫  

A = 1 _______ · 0.8 = _______ 
 = _______ 𝑂𝑢𝑡𝑝𝑢𝑡 = {

0, Σ ≤ 0∗∗

1, Σ > 0
 _______ 

B = 0 _______ · -0.3 = _______ 

 

Input 
…multiplied by the 
weightswA and wB 

… and added  

to the sum  
Activation Output  ∫  

A = 0 _______· 0.8 = _______ 
 = _______ 𝑂𝑢𝑡𝑝𝑢𝑡 = {

0, Σ ≤ 0∗∗

1, Σ > 0
 _______ 

B = 1 _______· -0.3 = _______ 

 

Task 2: Calculate the results for bias = +0.2 
 

A ·  wA  B ·  wB  bias  Sum Output 

0  0  

0.2 

  

0  1    

1  0    

1  1    

 
 

 

 
Solution for all possible four input cases in one table: 
 

A ·  wA  B ·  wB  bias  Sum Output 

0 0 0 0 

0 

0 0 

0 0 1 -0.3 -0.3 0 

1 0.8 0 0 0.8 1 

1 0.8 1 -0.3 0.5 1 

 

Solution for bias = +0.2 
 

A ·  wA  B ·  wB  bias  Sum Output 

0 0 0 0 

0.2 

0.2 1 

0 0 1 -0.3 -0.1 0 

1 0.8 0 0 1.0 1 

1 0.8 1 -0.3 0.7 1 
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Part 2: A Perceptron making decisions 
 

Your Perceptron has to make an important decision:  

Should I go out for a pizza today? 

 

There are four criteria for making the decision: 

A) I am hungry enough  weight factor wA = +0.6 

B) It is raining        weight factor wA = -0.3 

C) I feel like having a pizza! weight factor wA = +0.4 

D) I have a desire for hamburger  weight factor wA = -0.5 

Criteria with a positive weight value like A or C have an enabling,  

thus with a negative weight value like B or D have blocking effect. 

 

Task 3:  
Calculate both tables for bias +/- 0.1? 
 
 

Task 4:  
How would you interpret the effect of the bias value? 
 
What changes if the value is getting smaller? 

A ·  wA  B ·  wB  C ·  wC  D ·  wD  bias  Sum Out 

0  0  1  1  

+0.1 

  

1  0  1  1    

0  1  1  0    

 

 

 

A ·  wA  B ·  wB  C ·  wC  D ·  wD  bias  Sum Out 

0  0  1  1  

-0.1 

  

1  0  1  1    

0  1  1  0    

 

 

 
Solution 
A higher bias value would correspond to an active person who does not need much external influence to get excited. 

A low or even negative value would leave a person sitting in an armchair even if some activating criteria are met. 

Solution for bias = +0.1 | Out = 0, 1, 1    Solution for bias = -0.1 | Out = 0, 1, 0 

 

DALL-E 2 
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Lesson 3: Getting serious with logical functions  
 

What students should learn 
Boolean logic functions belong to the basic repertoire of theoretical 

computer science, they are the common thread through all its subareas. 

All other principles are based on them - from digital technology to the 

control structures of programming languages to automaton theory. 

Boolean algebra is part of computer science’s genetic material. 

Therefore, artificial neurons are also classified in this overarching concept: Can simple neurons reproduce Boolean 

logic functions? In this context, the simple perceptron turns out to be a binary classifier, which has further, 

astonishing capabilities in addition to the binary either-or division. 

Possible students’ activities  
The logical functions of AND-, IMPLICATION- and OR-connection are repeated. While students should be familiar 
with the Boolean “truth table” the “truth diagram” is introduced as a supplementary tool. Students can calculate 
the weighting factors for perceptron’s classifying truth tables.  
 

 
 
Part I: Revision of Boolean Logic Functions 
All 16 logic operations of a binary operator cannot be repeated here. We restrict ourselves to a selection of the 

relevant and important representatives, the logical: 

OR  AND IMPLICATION XOR  NOT 

 

A good overview can be found here: 
https://en.wikipedia.org/wiki/Truth_table 

 

Task 5: A short practice: 
https://www.computerscience.gcse.guru/quiz/logic-gate-truth-tables 

 

  

DALL-E 2 

https://en.wikipedia.org/wiki/Truth_table
https://www.computerscience.gcse.guru/quiz/logic-gate-truth-tables
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Part II: Mnemonics for logical functions and truth tables 

 
Mnemonic for OR 
After lunch, you eat dessert: chocolate or ice cream.   

Of course, you can have both! 

 

A stands for Chocolate, B for ice cream, no chocolate 

means “0”, no ice cream the same.  

The only combination of both which is ‘impossible’ is – 

of course – none of both       

 

 

Mnemonic for AND 
To drive a car, you must be at least 18 years old and have a driver's license.  

Both conditions must be met! This is the only combination that is allowed. 

(even in those three countries like Egypt, Honduras and India)       

 

Mnemonic for IMPLICATION 
When it rains, the road is wet. 

It is a ‘if … then‘ link. And it is somewhat non-intuitive, that’s why we explain it in detail: 

• If it doesn’t rain (A=0)  the road is not wet  (B=0).  This can be true. 

• If it doesn’t rain (A=0)  the road is wet   (B=1).  This can also be true. 

• If it is raining       (A=1)  the road is not wet  (B=0).  This is obviously false. 

• If it is raining       (A=1)  the road is wet   (B=1).  This is true. 

 

Mnemonic for XOR 
Either you go by train, or you fly by plane.  

You can't do both together at the same time. 

 

 

 

 

 

 

Task: answer the following questions concerning logical functions: 
 

- Do you find some other mnemonics for these logical functions?  

 

- If yes: Can you explain them? 

 

- Which logical function is this: “If fire breaks out, there must be oxygen.”  

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A B Out 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A B Out 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

?? 

DALL-E 2 

DALL-E 2 
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Part III: What is a “Truth diagram”? 
 

A short explanation for the frequently used Truth diagram, which is a supplement for the truth table: 

Given this truth table: 
 
 

A B Out 

0 0 1 

0 1 0 

 
 

… which can also be visualized as a diagram, with A as x-axis and B as y-axis. 
 
 

 
 

 

To display simple truth tables, you don't need a graph representation because the intermediate regions between the 

discrete values remain unused. However, the representation becomes meaningful in the later chapters if the value 

range is extended. Therefore, this representation is already introduced at this point. 

 

 

Logical OR 
 

Truth table 
 

Truth diagram 
 

Weights 
 

Perceptron 
 

 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

 

 

wA 

0,50 
 

wB 

0,50 
 

bias 

0,0 
 

 

 

A ·  wA  B ·  wB  bias  Sum Output 

0 0 0 0 

0.0 

0 0 

0 0 1 0.5 0.5 1 

1 0.5 0 0 0.5 1 

1 0.5 1 0.5 1.0 1 

 

 

 

 

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

0,50 

0,50 

0,0 

Green diamond means 1, “True”:  
At the coordinate A = 0 and B = 0 read from the 
table output value 1. This value is displayed with 
green color and a diamond symbol. 

 

Red dot means 0, “False”:  
At the coordinate A = 0 and B = 1 read from the 
table output value 0. This value is displayed with 
red color and a dot symbol. 
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Logical AND 
 

Truth table 
 

Truth diagram 
 

Weights 
 

Perceptron 
 

A B Out 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

 

wA 

0,50 

 

wB 

0,50 

 
bias 

-0,50 
 

 

 

A ·  wA  B ·  wB  bias  Sum Output 

0 0 0 0 

-0.50 

-0.50 0 

0 0 1 0.5 0 0 

1 0.5 0 0 0 0 

1 0.5 1 0.5 +0.50 1 

 

 

Logical IMPLICATION 
 

Truth table 
 

Truth-diagram 
 

Weights 
 

Perceptron 
 

A B Out 

0 0 1 

0 1 1 

1 0 0 

1 1 1 
 

 

wA 

-0,50 

 

wB 

0,50 

 
bias 

0,50 
 

 

 

A ·  wA  B ·  wB  bias  Sum Output 

0 0 0 0 

0.50 

0.5 1 

0 0 1 0.5 1.0 1 

1 -0.5 0 0 0 0 

1 -0.5 1 0.5 0.5 1 

 

The logical implication table can be used for classroom tests. It is not very important but can be utilized to test 

students understanding for the concepts.  

  

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

0,50 

0,50 

-0,50 

-0,50 

0,50 

0,50 
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Worksheet: logic functions 
 

Task 6: Logical NOT 
Imagine a neuron that inverts the value of an input: It turns an input-1 into an output-0 and vice versa. How should 

the weighting factor and bias be set for this to work? 

 

 

  

 

 

A ·  wA  bias  Sum Output 

0 0 
0,5 

0,5 1 

1 -1 -0,5 0 

 
 

 

 

 Task 7: Logical Inhibition 
 

Truth table 
 

Truth-diagram 
 

Weights 
 

Perceptron 
 

A B Out 

0 0 0 

0 1 1 

1 0 0 

1 1 0 
 

 

wA 

 

 

wB 

 

 
bias 

 
 

 

 

A ·  wA  B ·  wB  bias  Sum Output 

0  0  

 

 0 

0  1   1 

1  0   0 

1  1   0 

 

 
 
  

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A
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Task 8: Logical NAND, inverting the AND-function 
 

Truth table 
 

Truth diagram 
 

Weights 
 

Perceptron 
 

A B Out 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

 

wA 

 

 

wB 

 

 
bias 

 
 

 

 

A ·  wA  B ·  wB  bias  Sum Output 

0  0  

 

 1 

0  1   1 

1  0   1 

1  1   0 

 

 

 

 

Solution for NOT: 
wA = -0.5 

bias = 0.5 

Solution for Inhibition:  
wA = -0.5 

wB = 0.5 

bias = 0 

Solution for NAND:  
wA = -0.5 

wB = -0.5 

bias = 1 

  

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

 

 

 

0,0

1,0

0,0 1,0

B

A

0,0

1,0

0,0 1,0

B

A
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Lesson 4: Perceptron as binary classifier 
 

In the last chapter it was taught that a perceptron can map different logical 

operations by adjusting the weights. But the perceptron can calculate more than 

binary divisions, it is much more powerful. 

 
 
 
 

Part I: Logical AND revisited. What’s in the area between the four points? 
 

 

 

 

If we look at the Perceptron equation, nothing is said about the accepted values for A and B: 

𝑂𝑢𝑡𝑝𝑢𝑡 = {
0,    𝑖𝑓    A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 ≤ 0
1,    𝑖𝑓    A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 > 0

 

What if we put different values in our equation? For example: 

Task 9: “LOGICAL AND”-Perceptron 
Calculate the missing values and draw the truth diagram: 

A ·  0.5  B ·  0.5  bias  Sum Output 

0.5  0.5  

-0.5 

  

0.8  0.6    

0.2  0.6    

1  0.1    

 

 

 

 

 

 

can you imagine how the border line might run? 

 

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

0,50 

0,50 

-0,50 

? 

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A
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Solution for Task 9: 
 

A ·  0.5  B ·  0.5  bias  Sum Output 

0.5 0.25 0.5 0.25 

-0.5 

0 0 

0.8 0.4 0.6 0.3 0.2 1 

0.2 0.1 0.6 0.3 -0.1 0 

1 0.5 0.1 0.05 0.05 1 

 

 

 

 

 

 

 

 

 

 

Part II: A systematical approach with lots of calculations 
 

If we calculate a cloud of values for the AND-Perceptron we get this diagram 

where the border line is easy to see: 

 

 

 

 

 

 

 

 

If we calculate those many values for the OR-Perceptron we get this diagram 

where the border line also seems to be obvious 

 

 

 

 

 

0,0

0,2
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Task 10: a different linear equation 
 

Can you estimate (not calculate) how the weight values of the Perceptron have 

to be adapted to get this diagram? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task 11: an optimum linear equation for NAND 
 

Can you calculate how the weight values of the Perceptron have to be adapted 

to get this diagram? 

 

 

 

 

 

 

 

 

 

Solution Task 10:  
Weight values are wA = 0.3, wB = 0.7, bias = -0.5 

Solution Task 11:  
Weight values are wA = -0.5, wB = -0.5, bias = +0.75 

? 

? 

? 
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? 

? 
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 Part III: Playing with a perceptron simulation 
To develop a feeling for the way a perceptron works, it is a good idea to use a simulation as a support. In the 

following simulation, the students can solve some tasks by playing around and experimenting. 

https://iludis.de/PerceptronArea/index.html 

 

 

Task 12: 
a) Set the calculation mode to "Slider". This way you can adjust the perceptron yourself using the three sliders. 

Change the sliders so that the error is zero. What changes in wA, in wB and in the bias? 

 

b) Switch the activation function to ReLU and later to Sigmoid. Why does the plot change? 

Below you can see the three different activation functions. How do they behave? 

   
 

 

c) Now put the perceptron into learning mode using backpropagation. Does the perceptron always achieve 

learning success? How can you influence it? 

  

0

0,25

0,5

0,75

1

1,25

-1,25 -1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1 1,25

Step 
activation 
function

0

0,25

0,5

0,75

1

1,25

-1,25 -1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1 1,25

ReLU 
activation 
function

0

0,25

0,5

0,75

1

1,25

-1,25 -1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1 1,25

Sigmoid
activation
function

https://iludis.de/PerceptronArea/index.html
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Part IV: Mathematical view of perceptron classification or: there must be an easier way! 
In an intermediate math course at school every student knows the linear equation formula,  

with m as the value for the slope and b as the constant for the intercept: 

𝑦 = 𝑚 ∙ 𝑥 + 𝑏 

Linear equations 
https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-

lines_en.html 

If it seems necessary to repeat or deepen the basics of linear equations, you 

can start with this simulation. The basics of Y-axis intercept and slope are 

thereby interactively worked out and practiced. An interesting puzzle ("Line 

Game") rounds off the simulation. 

 

Can both equations – the linear equation and the Perceptron equation - be converted into each other? 
The two areas where the different values for the output apply must have a boundary line somewhere. It must be 

possible to describe this boundary line with a linear equation - and the information for this is contained in the 

perceptron equation. 

 

 

 

 

 

 

 

 

Our initial equation for the boundary line: A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 = 0 

To make it easier to understand, we rename both axis:  The input variable A becomes the variable x by renaming.  

In the same way, the input variable B becomes the variable y by renaming. 

x ∙ w𝐴 +  y ∙ w𝐵 + 𝑏𝑖𝑎𝑠 = 0 

Rearranging the equation gives:   y ∙ w𝐵 = −x ∙ w𝐴 − 𝑏𝑖𝑎𝑠 

𝑦 = −
𝑤𝐴

𝑤𝐵
∙ 𝑥    −

𝑏𝑖𝑎𝑠

𝑤𝐵
 

This equation can be interpreted: 

Slope: −
𝑤𝐴

𝑤𝐵
  Intercept: −

𝑏𝑖𝑎𝑠

𝑤𝐵
 

 

If wA and wB have the same signs, slope is negative. 
If wA and wB have opposite signs, slope is positive. 

If bias and wB have the same signs, intercept is negative. 
If bias and wB have opposite signs, intercept is positive. 
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0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

Area with output-value 0:  
A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 ≤ 0 

 

Area with output-value 1:  
A ∙ w𝐴 +  B ∙ w𝐵 + 𝑏𝑖𝑎𝑠 > 0 

 

Line where output-value changes:  
𝐀 ∙ 𝐰𝑨 + 𝐁 ∙ 𝐰𝑩 + 𝒃𝒊𝒂𝒔 = 𝟎 

 

https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html
https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html
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Task 13: Calculate the linear equations for the logical Functions and draw its line into the diagram: 

 
Logical OR Perceptron Equation: 

 

 

Start: 
0,50 ∙ 𝐴 +  0,50 ∙ B + 0 = 0 

 

 

Logical AND Perceptron Equation: 

 

 

Start: 
0,50 ∙ 𝐴 +  0,50 ∙ B − 0.50 = 0 

 

 

 

BETTER logical OR Perceptron Equation: 

 

 

 

 

a) Try to translate the drawn line into a linear equation. The intersection of the straight line with the y-axis is at 0.5. 

b) Why is the straight line better?  

c) Then try to convert the linear equation into the perceptron equation. 

 

Solution: 
Logical And: y = -x  logical OR: y = -x + 1 better logical OR:     y = -x + 0.5,   𝐴 ∙ 0.5 +  B ∙ 0.5 − 0,25 = 0 
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Lesson 5: Introduction to neural networks, XOR-Function 

What students should learn 
The input problem of the non-linearly separable XOR function leads to the 

combination of neurons into a new entity: the multilayer neural network, and thus 

ultimately to the deep neural network. At this point, the teacher should proceed 

cautiously so that each step can be carefully traced. r. 

 

 
 
 
 
 
 
 
 

Task 14: Draw the Truth diagram and try to find the weights for the perceptron 
 

Truth table 
 

Truth-diagram 
 

Perceptron 
 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
 

 

 

 

Solution 

It is the logical XOR-function, and  

the truth diagram looks like this: 

It is futile to search for the weights for the  

perceptron because the weights of all yet  

known logical functions map to a  

single linear equation (AND, OR, NAND, IMP).  

But for the separation of the XOR elements  

one needs two straight lines; with one straight  

line it cannot be separated. 

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

Possible students’ activities  
Students should first try to use the truth diagram to figure out a perceptron 
weighting those maps to the XOR link. They will notice that this cannot work: You 
need two discriminator lines to fully describe this logic. 
 
Guided by a graphical elaboration of the XOR-connection, the students work out 
that the solution is obtained by means of a superposition of AND- and OR-
perceptrons. A third perceptron is needed to combine the outputs of both 
perceptrons.  
 
At this point, the students work out the operating principle of the multilayer 
neural network: Individual neurons take over partial areas of an overall task, 
downstream neurons unite the individual partial areas to form a whole. 
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Part II: Analysis of the problem 
The XOR function can be seen as a combination or superposition of an OR and an NAND function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And if that is the case, the next thing to do is to look at the truth tables of the two logic functions: 

 

 

 

 

  

A B OutB 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

A B OutA 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A B  OutA OutB Out 

0 0 0 1 0 

0 1 1 1 1 

1 0 1 1 1 

1 1 1 0 0 

0,0
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Area and line belong to this 
function: NAND-Node 
 

Area and line belong to this 
function: OR-Node 
 

OR NAND 

XOR 

NAND OR 

Combination 
A third node must be 

introduced to perform the 

combination computationally 

 

XOR 

 Task 
A What kind of node must be 

added to achieve the desired 

combination? 
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Solution: It is the AND-Node 
 

Part III: A very simple Deep Neural Network 
The trick now is to connect multiple neurons into a network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Structure: 
The structure is divided into layers of three different types. The network shown above is divided into these layers: 

• An Input layer with two input neurons,  

• A hidden layer with two neurons  

• An output layer with a single neuron. 

 
Input layer 
According to the nomenclature, one counts the inputs (here A and B) as independent neurons, so-called input 

neurons. This seems a bit strange at first, because these neurons do not perform any computations. They only serve 

as a signal source. 

Hidden layer 
The hidden layer contains neurons that cannot be seen from the outside - if the network were a real existing thing. 

In principle, all layers between the input and output layer are called hidden layers. 

 

Signal flow 
Signal flow passes through all three layers: 

• 1st layer consists of input neurons, which provide the input signals. 

• In 2nd layer here are two neurons which are fed by input neurons and process the signals. 

• In the 3rd layer is the single output neuron, which outputs the computation result. 

 

Hidden Layer Output Layer Input Layer 

Signal Direction 
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Neuron nomenclature 
The neurons are given two designations: 

• A superscript x, which indicates the layer to which the neuron belongs. 

• A subscript symbol y, this is a continuous numbering from top to bottom for each neuron of the layer. 

 

 

𝑛𝑦
𝑥

 

 

 

Weights nomenclature 
The weights on the connection arrows are also given their own nomenclature: 

 

 

𝑤𝑝𝑦
𝑥  

 

• Superscript symbol "x" is the layer designation and means "connection towards layer x", 

 

• The two subscripts denote the neurons py,  

o the first symbol p stands for the number of the origin neuron, located in the previous layer x-1,  

o the second symbol y for the target neuron in layer n. 

 

Example: 
 

Start neuron: 

𝑛3
2

 

Weight connection: 

𝑤32
3

 

End neuron: 

𝑛2
3

 

 

  

Layer number x  
at which the weighting arrow arrives 
 
Neuron number y in layer x  
at which the weighting arrow arrives 
 

Neuron number q in layer x-1  
at which the weighting arrow starts 
(p stands for previous) 
 

Layer number x  
to which the neuron belongs. 
 
Neuron number y in layer x  
 

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ4 
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Task 15:  Terminology of the weight factors 
a) Can you explain how the bias nomenclature is constructed? 

b) Try to find the correct nomenclature for the yellow neuron in the middle. 

c) Try to find the correct nomenclature for the missing weights: 

 

 

 

 

 

 

 

 

 

d) Describe the network: how many layers, how many hidden layers, how many nodes and  

how many connections do we have in this net? 

e) formulate the two-colored weights according to the correct nomenclature 

Solution:  

a)  

 

𝑛3
2 

4 layers, 
2 hidden layers, 
15 nodes 
48 connections (weights) 

 

Red connection:  𝑤54
3  

Green connection:  𝑤22
4  

 
 
Part IV: The Neural Network game, unplugged activity 
This activity originally belongs to “TechGirlz”: 

https://docs.google.com/document/d/1_uGzFd-iHBgCui1NMSwtcQJbrICKpiXZGp55tZv3ILk/edit 

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁴ Output Layer ∈ ℝ² 

https://docs.google.com/document/d/1_uGzFd-iHBgCui1NMSwtcQJbrICKpiXZGp55tZv3ILk/edit
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 Lesson 6: Calculating the forward pass of a network 
 

What students should learn 
Now that multilayer neural networks have been introduced in principle, the 

first calculations can take place. These simple networks, which solve the XOR 

problem, can still be calculated well by hand with simple weights.  

Through the calculations, the students get a feeling for how a network works: 

The input is passed from left to right by each neuron adding its share. The 

output of one neuron becomes the input of the next neuron. In the process, 

the inputs and outputs are mixed. To recognize this is the goal of this lesson. 

 

 

Part I: Understanding the 
problem 
 
Possible Types of Solutions  
for the XOR-Problem 
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Possible students’ activities  
There are two standard solutions for the architecture of an XOR neural network. Both networks are calculated by 
the students on the one hand with simple numerical values and thus understood.  
 
Through the logic of the numerical values, the task distribution of the individual neurons becomes recognizable: 
The students recognize activating, inhibiting, combining neurons, neurons that supply functional components and 
those that compute these individual functional components with each other.  
 
These principles of action are the same as in large networks, such as those used for image recognition or speech 
synthesis (NLP). The teacher should specifically address these operating principles. 
 
Two simulations mapping the classification behavior of the two XOR networks allow students to develop a feel for 
the behavior and performance of the networks through experimentation and playing around. 
 

Stable Diffusion 
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Part II: Calculating the simplest Neural Net for XOR by hand 
 

 

 

 

 

 

 
 
Task 16:  
Let’s calculate the output signal of this network  

from the beginning, starting from the inputs: 

The weights are: 
Green neuron 𝑛1

2 Blue neuron 𝑛1
2 Red neuron 𝑛1

3 
𝑤11

2  𝑤21
2  𝑏𝑖𝑎𝑠1

2 𝑤12
2  𝑤22

2  𝑏𝑖𝑎𝑠2
2 𝑤11

3  𝑤31
3  𝑏𝑖𝑎𝑠1

3 
1 1 0 -1 -1 2 1 1 -1 

Neuron 1, 𝒏𝟏
𝟐:  

 
A ∙ 𝑤11

2   B ∙ 𝑤21
2   𝑏𝑖𝑎𝑠1

2  𝑆𝑢𝑚1
2 𝑶𝒖𝒕𝟏

𝟐 

0  0  

0 

  

0  1    

1  0    

1  1    

Neuron 2, 𝒏𝟐
𝟐: 

 
A ∙ 𝑤12

2   B ∙ 𝑤22
2   𝑏𝑖𝑎𝑠2

2  𝑆𝑢𝑚2
2 𝑶𝒖𝒕𝟐

𝟐 

0  0  

1 

  

0  1    

1  0    

1  1    

Neuron 3, 𝒏𝟏
𝟑: 

 
𝑶𝒖𝒕𝟏

𝟐 ∙ 𝑤11
3   𝑶𝒖𝒕𝟐

𝟐 ∙ 𝑤21
3   𝑏𝑖𝑎𝑠1

3  𝑆𝑢𝑚1
3 𝑶𝒖𝒕𝟏

𝟑 

    

-1 

  

      

      

      

 
Task 17)  
Which types of logic functions do we have in all three neurons? 
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Solution 16) 
 

A ∙ 𝑤11
2   B ∙ 𝑤21

2   𝑏𝑖𝑎𝑠1
2  𝑆𝑢𝑚1

2 𝑶𝒖𝒕𝟏
𝟐 

0 0 0 0 

0 

0 0 

0 0 1 1 1 1 

1 1 0 0 1 1 

1 1 1 1 1 1 

A ∙ 𝑤12
2   B ∙ 𝑤22

2   𝑏𝑖𝑎𝑠2
2  𝑆𝑢𝑚2

2 𝑶𝒖𝒕𝟐
𝟐 

0 0 0 0 

2 

2 1 

0 0 1 -1 1 1 

1 -1 0 0 1 1 

1 -1 1 -1 0 0 

𝑶𝒖𝒕𝟏
𝟐 ∙ 𝑤11

3   𝑶𝒖𝒕𝟐
𝟐 ∙ 𝑤21

3   𝑏𝑖𝑎𝑠1
3  𝑆𝑢𝑚1

3 𝑶𝒖𝒕𝟏
𝟑 

0 0 1 1 

-1 

0 0 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 0 0 0 0 

 

Solution 17) 
• Neuron 1 of the two hidden neurons represents an OR circuit and ensures that in cases (1,0), (0,1) and (1,1) the output 

neuron is activated first. It has an activating effect. 

 

• Neuron 2 of the two hidden neurons represents a NAND circuit and ensures that in case (1,1) the output neuron will be 

switched off again. It has an inhibiting effect. 

 

• Neuron 3, the output neuron, represents an AND circuit and combines the two outputs of the hidden neurons. 

 

 

 

Part II: Playing around with a perceptron simulation 
https://iludis.de/XOR_Perceptron/index.html 

Tasks: 
This simulation not only shows the forward 

pass of the neural network, but also shows 

the learning process. This will be discussed 

later. 

 

a) Switch between the data sets XOR, XNOR, 

Cross and narrow Cross. How do the weights 

change? 

 

b) Does the calculation always come to the 

result? What happens if you randomize the 

weights again using the button? 

c) If one has reinitialized the net, it can learn the data set, but sometimes with different weights. Can you interpret 

which logic functions the individual neurons represent? 

  

https://iludis.de/XOR_Perceptron/index.html
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Part III: Calculating the second variant 
Neural Net for XOR by hand 
 

 

 

 

 

 

 

Task 18)  
Let’s calculate the output signal of this network  

from the beginning, starting from the inputs: 

The weights are: 
Green neuron 𝑛1

2 Yellow Neuron 𝑛2
2 Blue neuron 𝑛3

2 Red neuron 𝑛1
2 

𝑤11
2  𝑏𝑖𝑎𝑠1

2 𝑤12
2  𝑤22

2  𝑏𝑖𝑎𝑠2
2 𝑤23

2  𝑏𝑖𝑎𝑠3
2 𝑤11

3  𝑤21
3  𝑤31

3  𝑏𝑖𝑎𝑠1
3 

1 0 1 1 0 1 0 -1 2 -1 0 

Neuron 1, 𝒏𝟏
𝟐:  

A ∙ 𝑤11
2   𝑏𝑖𝑎𝑠1

2  𝑆𝑢𝑚1
2 𝑶𝒖𝒕𝟏

𝟐 

0  
1 

  

1    

Neuron 2, 𝒏𝟐
𝟐: 

A ∙ 𝑤12
2   B ∙ 𝑤22

2   𝑏𝑖𝑎𝑠2
2  𝑆𝑢𝑚2

2 𝑶𝒖𝒕𝟐
𝟐 

0  0  

2 

  

0  1    

1  0    

1  1    

Neuron 3, 𝒏𝟑
𝟐: 

B ∙ 𝑤23
2   𝑏𝑖𝑎𝑠3

2  𝑆𝑢𝑚3
2 𝑶𝒖𝒕𝟑

𝟐 

0  
1 

  

1    

Neuron 3, 𝒏𝟏
𝟑: 

 
𝑶𝒖𝒕𝟏

𝟐 ∙ 𝑤11
3   𝑶𝒖𝒕𝟐

𝟐 ∙ 𝑤21
3   𝑶𝒖𝒕𝟑

𝟐 ∙ 𝑤31
3   𝑏𝑖𝑎𝑠1

3  𝑆𝑢𝑚1
3 𝑶𝒖𝒕𝟏

𝟑 

      

0 

  

        

        

        

 
Task 19)  
Which types of logic functions do we have in all four neurons? 
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Solution 18: 
A ∙ w11

2   bias1
2  Sum1

2 𝐎𝐮𝐭𝟏
𝟐 

0 0 
0 

0 0 

1 1 1 1 
 

A ∙ w12
2   B ∙ w22

2   bias2
2  Sum2

2 𝐎𝐮𝐭𝟐
𝟐 

0 0 0 0 

0 

0 0 

0 0 1 1 1 1 

1 1 0 0 1 1 

1 1 1 1 2 1 
 

B ∙ w23
2   bias3

2  Sum3
2 𝐎𝐮𝐭𝟑

𝟐 
0 0 

0 
0 0 

1 1 1 1 
 

𝐎𝐮𝐭𝟏
𝟐 ∙ w11

3   𝐎𝐮𝐭𝟐
𝟐 ∙ w21

3   𝐎𝐮𝐭𝟑
𝟐 ∙ w31

3   bias1
3  Sum1

3 𝐎𝐮𝐭𝟏
𝟑 

0 0 0 0 0 0 

0 

0 0 

0 0 1 -1 1 2 1 1 

1 -1 0 0 1 2 1 1 

1 -1 1 -1 1 2 0 0 

 
Solution 19 
Neuron 1 and Neuron 3 pass on the input signal unchanged. Before entering the output neuron in layer 3, however, 

these signals are inverted by negative weighting. This gives them an inhibitory effect. Middle neuron 2 acts here 

simultaneously as amplifying and activating: first as an OR operation, the output signal is amplified with weighting 

'2'. The output neuron in layer 3 is thereby activated. 

If neuron 1 acts together with neuron 2 or neuron 3 with neuron 2, the activating effect of neuron 2 predominates 

and the output neuron fires.If, on the other hand, neuron 1 and neuron 2 act together in an inhibitory manner at the 

same time, their effect outweighs that of neuron 3. As a result, the output neuron is muted. 

 
Part VI: Playing with a perceptron simulation 
https://iludis.de/XOR_Perceptron2/index.html 

Tasks: 
This simulation not only shows the forward pass 

of the neural network, but also shows the 

learning process. This will be discussed later. 

a) Switch between the data sets XOR, XNOR, 

Cross and narrow Cross. How do the weights 

change? 

 

b) Does the calculation always come to the 

result? What happens if you randomize the 

weights again using the button? 

 

c) If one has reinitialized the net, it can learn the 

data set, but sometimes with different weights. 

Can you interpret which logic functions the 

individual neurons represent? 

 

https://iludis.de/XOR_Perceptron2/index.html
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Lesson 7a: Introduction to backpropagation for teachers 
Mathematical derivation for teachers, please not for students! 

 

The person who teaches the qualitative principle of backpropagation should 

have a certain knowledge advantage over the students. Therefore, it is necessary 

to deal with the basic mathematics of backpropagation. The equations, which 

can also be taken over in programming languages or Excel sheets, should be 

repeated and summarized here. The algorithms are implemented and tested; the 

neural nets programmed with them converge ;-) 

 

 

all derivations are calculated for the sigmoid activation function! 
 
 

Remember the term  
definitions in lesson 5:  

  
  
  
 
Inside the neuron 𝒏𝒚

𝒙 we find the following two components: 
 

 

𝑠𝑢𝑚𝑦
𝑥 

The term ‘sum’ stands for ‘sum of all inputs of neuron’, 
which is calculated by adding all weighted inputs inside neuron 𝑛𝑦

𝑥 

𝑜𝑢𝑡𝑦
𝑥 

The term ‘out’ stands for ‘output of neuron’ 
which is calculated by the activation function inside neuron 𝑛𝑦

𝑥 

 

Outside the neuron 𝒏𝒚
𝒙 we find the following two components: 

𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙 
It is calculated as the difference of the neural net-output and the true value (the 
target value). It is a measure of how right or wrong an NN can predict. 

𝑡𝑎𝑟𝑔𝑒𝑡𝑦  
The target value is the actual, real-world value of a data set to which the predicted 
value of a neural network is compared. 

 

 
All components are calculated: 

 𝑠𝑢𝑚𝑦
𝑥 =  𝑤1𝑦

𝑥 ∙ 𝑖𝑛𝑝𝑢𝑡1 +  𝑤2𝑦
𝑥 ∙ 𝑖𝑛𝑝𝑢𝑡2 + ⋯ + 𝑏𝑖𝑎𝑠𝑦

𝑥 
The sum of neuron 𝑛𝑦

𝑥 is calculated by adding all inputs 

multiplied by their weights. 

 𝑜𝑢𝑡𝑦
𝑥 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑢𝑚𝑦

𝑥) 

The activation function takes as variable the already 
calculated sum 𝑠𝑢𝑚𝑦

𝑥and generates as function value the 

output 𝑜𝑢𝑡𝑦
𝑥. 

 𝑒𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙 =
1

2
∑ (𝑡𝑎𝑟𝑔𝑒𝑡𝑦 − 𝑜𝑢𝑡𝑦

𝑥)
2

𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 
𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑦

 
If it is an output neuron, it contributes to the error value. 
All errors of all output neurons are added up. This results 
in the total error. 

  

𝑛𝑦
𝑥 

The term ‘n’ stands for ‘neuron’ in layer x 
in place y from top to bottom 

𝑤𝑝𝑦
𝑥  

The term ‘w’ stands for ‘weight’ to a neuron in layer ‘x’ 
connecting neurons between place ‘p’ and place ‘y’ 

𝑏𝑖𝑎𝑠𝑦
𝑥 

The term ‘bias’ stands for itself, 
associated to neuron 𝑛𝑦

𝑥 

DALL-E 2 
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Calculate the gradient for the two components 𝐰𝟏𝟏
𝟑  and 𝐛𝐢𝐚𝐬𝟏

𝟑in the output layer 
 

 

 

 

 

 

For the output neuron, we find (generally formulated): For our example neural net, we find for 𝐧𝟏
𝟑: 

∂errortotal

∂wpy
x

=
∂errortotal

∂outy
x

∙
∂outy

x

∂sumy
x

∙
∂sumy

x

∂wpy
x

 
∂error

∂w11
3 =

𝛛𝐞𝐫𝐫𝐨𝐫

𝛛𝐨𝐮𝐭𝟏
𝟑 ∙

𝛛𝐨𝐮𝐭𝟏
𝟑

𝛛𝐬𝐮𝐦𝟏
𝟑 ∙

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐰𝟏𝟏
𝟑  

∂errortotal

∂biasy
x

=
∂errortotal

∂outy
x

∙
∂outy

x

∂sumy
x

∙
∂sumy

x

∂biasy
x
 

∂error

∂bias1
3 =

𝛛𝐞𝐫𝐫𝐨𝐫

𝛛𝐨𝐮𝐭𝟏
𝟑 ∙

𝛛𝐨𝐮𝐭𝟏
𝟑

𝛛𝐬𝐮𝐦𝟏
𝟑 ∙

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐛𝐢𝐚𝐬𝟏
𝟑 

 

A) Calculate the first derivative for the relation between output and error: 

𝛛𝐞𝐫𝐫𝐨𝐫

𝛛𝐨𝐮𝐭𝟏
𝟑 =

∂
1
2

∑ (target1 − out1
3)

2

∂out1
3 =

∂
1
2 (target1 − out1

3)
2

∂out1
3 = −(target1 − out1

3) =  (𝐨𝐮𝐭𝟏
𝟑 − 𝐭𝐚𝐫𝐠𝐞𝐭𝟏 ) 

 

 B) Calculate the second derivative for the relation between sum and sigmoid activation function: 

𝛛𝐨𝐮𝐭𝟏
𝟑

𝛛𝐬𝐮𝐦𝟏
𝟑 =

∂ [
1

1 + e−sum1
3]

∂sum1
3 = 𝐨𝐮𝐭𝟏

𝟑 ∙ (𝟏 − 𝐨𝐮𝐭𝟏
𝟑) 

 

 C) Calculate the third derivative for the relation between weight and sum: 

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐰𝟏𝟏
𝟑 =  

∂{ w11
3 ∙ out1

2 +  w21
3 ∙ out2

2 + bias1
3}

∂sum1
3 = 𝒐𝒖𝒕𝟏

𝟐                  𝒔𝒊𝒏𝒄𝒆 𝒐𝒖𝒕𝟏
𝟐 𝒊𝒔 𝒕𝒉𝒆 𝒏𝒆𝒖𝒓𝒐𝒏𝟏

𝟑 𝒊𝒏𝒑𝒖𝒕 

 

 

 D) Putting it all together: 

∂Error

∂w11
3 =  (𝐨𝐮𝐭𝟏

𝟑 − 𝐭𝐚𝐫𝐠𝐞𝐭𝟏 ) ∙ 𝐨𝐮𝐭𝟏
𝟑 ∙ (𝟏 − 𝐨𝐮𝐭𝟏

𝟑) ∙ 𝒐𝒖𝒕𝟏
𝟐                𝒔𝒊𝒏𝒄𝒆 𝒐𝒖𝒕𝟏

𝟐 𝒊𝒔 𝒕𝒉𝒆 𝒏𝒆𝒖𝒓𝒐𝒏𝟏
𝟑 𝒊𝒏𝒑𝒖𝒕 

 

∂Error

∂bias1
3 =  (𝐨𝐮𝐭𝟏

𝟑 − 𝐭𝐚𝐫𝐠𝐞𝐭𝟏 ) ∙ 𝐨𝐮𝐭𝟏
𝟑 ∙ (𝟏 − 𝐨𝐮𝐭𝟏

𝟑) ∙   𝟏                     𝒔𝒊𝒏𝒄𝒆 
𝝏𝒔𝒖𝒎𝟏

𝟑

𝝏𝒃𝒊𝒂𝒔𝟏
𝟑  𝒊𝒔 𝟏  

  

 

error target 
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Calculate the gradient for the two components 𝐰𝟏𝟏
𝟐  and 𝐛𝐢𝐚𝐬𝟏

𝟐in the hidden layer 
 

 

 

 

 

 

 

For a hidden neuron, we find (generally formulated): 

∂error𝑡𝑜𝑡𝑎𝑙

∂wpz
hidden

=    [
∂errortotal

∂outy
outlayer

∙
∂outy

outlayer

∂sumy
outlayer

] ∙  
𝛛𝐬𝐮𝐦𝐲

𝐨𝐮𝐭𝐥𝐚𝐲𝐞𝐫

𝛛𝐨𝐮𝐭𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

 ∙  
𝛛𝐨𝐮𝐭𝐳

𝐡𝐢𝐝𝐝𝐞𝐧

𝛛𝐬𝐮𝐦𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

  ∙   
𝛛𝐬𝐮𝐦𝐳

𝐡𝐢𝐝𝐝𝐞𝐧

𝛛𝐰𝐩𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

 

For our example neural net, we find (exemplarily): 

∂error

∂w11
2      =             [

∂error

∂out1
3 ∙

∂out1
3

∂sum1
3]            ∙        

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐨𝐮𝐭𝟏
𝟐       ∙      

𝛛𝐨𝐮𝐭𝟏
𝟐

𝛛𝐬𝐮𝐦𝟏
𝟐        ∙        

𝛛𝐬𝐮𝐦𝟏
𝟐

𝛛𝐰𝟏𝟏
𝟐  

 

A) Calculate the first term which is well-known from the output layer: 

[
∂error

∂out1
3 ∙

∂out1
3

∂sum1
3] = [(out1

3 − target1 ) ∙ out1
3 ∙ (1 − out1

3)]         this can be reviewed on the previous page 

B) Calculate the gradient-link between the hidden and the output node: 

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐨𝐮𝐭𝟏
𝟐 =

∂{ w11
3 ∙ out1

2 +  w21
3 ∙ out2

2 +  bias1
3}

∂out1
2 = 𝐰𝟏𝟏

𝟑  

C) Calculate the third derivative is very similar to B) on the previous page: 

𝛛𝐨𝐮𝐭𝟏
𝟐

𝛛𝐬𝐮𝐦𝟏
𝟐 =

∂ [
1

1 + e−sum1
2]

∂sum1
2 = 𝐨𝐮𝐭𝟏

𝟐 ∙ (𝟏 − 𝐨𝐮𝐭𝟏
𝟐) 

D) Calculate the fourth derivative: 

𝛛𝐬𝐮𝐦𝟏
𝟐

𝛛𝐰𝟏𝟏
𝟐 =

∂{ w11
2 ∙ A +  w21

2 ∙ B +  bias1
2}

∂w11
2 = 𝐀 

 

E) Putting it all together: 

∂Error

∂w11
2 = [(out1

3 − target1 ) ∙ out1
3 ∙ (1 − out1

3)]       ∙     𝐰𝟏𝟏
𝟑     ∙     𝐨𝐮𝐭𝟏

𝟐 ∙ (𝟏 − 𝐨𝐮𝐭𝟏
𝟐)  ∙     𝐀 

 

∂Error

∂bias1
2 =  [(out1

3 − target1 ) ∙ out1
3 ∙ (1 − out1

3)]      ∙     𝐰𝟏𝟏
𝟑     ∙      𝐨𝐮𝐭𝟏

𝟐 ∙ (𝟏 − 𝐨𝐮𝐭𝟏
𝟐)  ∙     𝟏       𝑠𝑖𝑛𝑐𝑒 

𝜕𝑠𝑢𝑚1
2

𝜕𝑏𝑖𝑎𝑠1
2

 𝑖𝑠 1  

 

 

 

 

error target 
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Calculate the gradient for the two components 𝐰𝟏𝟏
𝟐  and 𝐛𝐢𝐚𝐬𝟏

𝟐in the hidden layer 
 

 

 

 

 

 

 

 

 

 

For a hidden neuron, we find (generally formulated): 

∂error𝑡𝑜𝑡𝑎𝑙

∂wpz
hidden

=              ∑ [
∂errortotal

∂outy
outlayer

∙
∂outy

outlayer

∂sumy
outlayer

]
𝑨𝒍𝒍 𝒐𝒖𝒕𝒑𝒖𝒕
𝒏𝒆𝒖𝒓𝒐𝒏𝒔 𝒚

       ∙         
𝛛𝐬𝐮𝐦𝐲

𝐨𝐮𝐭𝐥𝐚𝐲𝐞𝐫

𝛛𝐨𝐮𝐭𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

∙
𝛛𝐨𝐮𝐭𝐳

𝐡𝐢𝐝𝐝𝐞𝐧

𝛛𝐬𝐮𝐦𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

 ∙
𝛛𝐬𝐮𝐦𝐳

𝐡𝐢𝐝𝐝𝐞𝐧

𝛛𝐰𝐩𝐳
𝐡𝐢𝐝𝐝𝐞𝐧

 

 

For our example neural net, we find (exemplarily): 

∂error

∂w11
2 =                 [

∂error1

∂out1
3 ∙

∂out1
3

∂sum1
3         +       

∂error2

∂out2
3 ∙

∂out2
3

∂sum2
3]         ∙       

𝛛𝐬𝐮𝐦𝟏
𝟑

𝛛𝐨𝐮𝐭𝟏
𝟐   ∙    

𝛛𝐨𝐮𝐭𝟏
𝟐

𝛛𝐬𝐮𝐦𝟏
𝟐    ∙    

𝛛𝐬𝐮𝐦𝟏
𝟐

𝛛𝐰𝟏𝟏
𝟐  

 

Putting it all together (for the sake of clarity the term “target” is abbreviated to a single “t”): 

∂Error

∂w11
2 = [(out1

3 − t1 ) ∙ out1
3 ∙ (1 − out1

3) + (out2
3 − t2 ) ∙ out2

3 ∙ (1 − out2
3)] ∙ 𝐰𝟏𝟏

𝟑 ∙ 𝐨𝐮𝐭𝟏
𝟐 ∙ (𝟏 − 𝐨𝐮𝐭𝟏

𝟐)  ∙ 𝐀 

 
∂Error

∂bias1
2 =  [(out1

3 − t1 ) ∙ out1
3 ∙ (1 − out1

3) + (out2
3 − t2 ) ∙ out2

3 ∙ (1 − out2
3)] ∙ 𝐰𝟏𝟏

𝟑 ∙ 𝐨𝐮𝐭𝟏
𝟐 ∙ (𝟏 − 𝐨𝐮𝐭𝟏

𝟐)  ∙ 𝟏 

 

Useful abbreviations: 

from here on the formula becomes very confusing. Therefore, a practical abbreviation is introduced: The so-called 

"node delta". Let’s assume our net with layer 3 as output-layer and layer 2 as the hidden layer: 

For an output neuron in layer 3 it is defined as: 

node∆1
3      =     (out1

3 − target1 ) ∙ out1
3 ∙ (1 − out1

3)  

 

For a hidden neuron in layer 2 it is defined as: 

node∆1
2      =       ∑[node∆y

3]

𝑦

    ∙    w11
3 ∙ out1

2 ∙ (1 − out1
2) 

 

 

 

error1 target 

 

error2 target 
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recognize the commonalities and patterns: general case 
 
the step from mathematical representation to implementation is often difficult to see. therefore, a kind of 

generalized concrete representation shall be derived here, which can be more easily transferred to JavaScript or 

Python, for example. 

 

 

 

 

System of equations for partial derivatives 

∂error

∂w11
4  =  

∂error

∂out1
4    ∙     

∂out1
4

∂sum1
4 ∙

𝜕𝑠𝑢𝑚1
4

𝜕𝑤11
4  

∂error

∂w11
3  =   

∂error

∂out1
4    ∙    

∂out1
4

∂sum1
4         ∙        

∂sum1
4

∂out1
3   ∙   

∂out1
3

∂sum1
3 ∙

∂sum1
3

∂w11
3  

∂error

∂w11
2  =   

∂error

∂out1
4    ∙    

∂out1
4

∂sum1
4         ∙        

∂sum1
4

∂out1
3   ∙   

∂out1
3

∂sum1
3        ∙      

∂sum1
3

∂out1
2    ∙    

∂out1
2

∂sum1
2 ∙

∂sum1
2

∂w11
2  

Concretely formulated for the sigmoid function: Weights 

∂error

∂w11
4  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4) ∙ o1
3 

∂error

∂w11
3  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4)        ∙     w11
4 ∙ o1

3 ∙ (1 − o1
3) ∙ o1

2 

∂error

∂w11
2  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4)        ∙     w11
4 ∙ o1

3 ∙ (1 − o1
3)      ∙      w11

3 ∙ o1
3 ∙ (1 − o1

3) ∙ A 

Concretely formulated for the sigmoid function: Biases 

∂error

∂bias1
4  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4) 

∂error

∂bias1
3  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4)        ∙     w11
4 ∙ o1

3 ∙ (1 − o1
3) 

∂error

∂bias1
2  = (o1

4 − t1 ) ∙ o1
4 ∙ (1 − o1

4)        ∙     w11
4 ∙ o1

3 ∙ (1 − o1
3)      ∙      w11

3 ∙ o1
3 ∙ (1 − o1

3) 

 

Correction term for the weights and biases: 

w11 
4,after corr =  w11 

4,before corr − learnrate ∙
∂error

∂w11
4  𝑏𝑖𝑎𝑠1 

4,after corr =  bias1 
4,before corr − learnrate ∙

∂error

∂bias1
4  

w11 
3,after corr =  w11 

3,before corr − learnrate ∙
∂error

∂w11
3  𝑏𝑖𝑎𝑠1 

3,after corr =  bias1 
3,before corr − learnrate ∙

∂error

∂bias1
3  

w11 
2,after corr =  w11 

2,before corr − learnrate ∙
∂error

∂w11
2  𝑏𝑖𝑎𝑠1 

2,after corr =  bias1 
2,before corr − learnrate ∙

∂error

∂bias1
2  
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Lesson 7b: Introduction to backpropagation for students 

What students should learn 
The basic principle is simple: the measured error of a neural network is fed back 

to the posterior neurons according to the causation principle. Neurons with large 

weighting factors thus receive a larger correction instruction. While the basic 

idea is easy to understand, the mathematical formulation is complicated. 

Therefore, on the one hand, one restricts oneself to the communication of the 

principle of action and to the calculation of simple cases. The simple cases 

include the perceptron algorithm, which the students perform by hand. 

In addition, the mechanism of backpropagation will be explained and played 

through, the so-called chain rule. By means of this rule, which originates from 

differential calculus, the error is divided in neuronal networks and passed on to 

the neurons further back. The principle of operation will be illustrated by means 

of a simple example from everyday life. 

 

 

  

Possible students’ activities 
Backpropagation is taught in four parts that build on each other:  
 
in the first part, the teacher uses illustrations to convey the basic idea. Students should understand here that the 
error of a single neuron is backpropagated to improve the weighting factors. Students should copy the 
illustrations into their notebooks. 
 
If there are several linked neurons, i.e., a neural network, an error must be divided. Here, the continuing idea is 
that weighting factors are changed more the greater their influence. This can be worked out in the teacher-
student conversation in a questioning-developing way. 
 
By means of the simple example of body and shoe size, the chain rule is taught. This is worked out by hand using a 
worksheet. The transfer of the chain rule to a perceptron takes place afterwards. However, this is only done 
qualitatively, higher mathematics is not used. 
 
The fact that a backpropagation with a learning rate actually works is worked out independently using a logic 
function. A perceptron with initially wrongly chosen weighting factors is improved step by step (batch size 1) until 
the corrected weight values are reached after one epoch. 
 
In a final step, the learned principles are extended to neural networks, resulting in a multidimensional problem 
that can no longer be solved analytically but only iteratively. The terminology of local and global minima are 
introduced and the general procedure for the optimization of learning processes is modelled by means of the 
parachute model. 
 

DALL-E 2 
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Part I: The basic principle of forward- and backward pass 
 

 

 
 
 
 
In the forward pass, the weights and bias values are 
fixed and unchangeable. The input signals are 
propagated through the network and generate the 
result signal at the output neurons. 
 
This happens both during the learning phase and 
later, when the network has finished learning, 
during the inference phase in which the network 
works regularly. 
 
 
 

 

 
 
Only during the learning phase the error is 
calculated: The output signals of the network is 
compared with the actual target values. The error 
results from the difference between the two signals. 
It is squared to become sign-independent.  
 
All error signals of all output neurons are added 
together: This is how the total error of the network 
is calculated. 
 

 
 

 
 

 
 
Now for error backpropagation into the neural 
network, where the error is distributed:  
 
the larger the input value of a neuron, the more the 
error is distributed there. In this process, the 
weights are backpropagated according to the 
allocated error portion. This principle is continued 
from the output all the way back to the input layer.  
 
While the prediction signal of the network in the 
forward pass runs from the left to the right through 
all neurons, the error signal in the backpropagation 
pass runs back from the right to the left and all 
weights are slightly changed in the right direction. 

 
  

Calculate the Output: Forward Pass 

Calculate the total error as  
Sum of all output neuron errors 

𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 =  
√

∑ (𝒕𝒂𝒓𝒈𝒆𝒕𝒊 − 𝒐𝒖𝒕𝒑𝒖𝒕𝒊)
𝒂𝒍𝒍 𝒐𝒖𝒕𝒑𝒖𝒕
𝒏𝒆𝒖𝒓𝒐𝒏𝒔 𝒊

 

 

error target 

Calculate the corrections: Backpropagation 
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Part II: A model for the chain rule  
 

You want to drive a longer distance (250km) by car and estimate how much the 

gasoline will cost you. For this purpose, you will receive two data sets in chart 

form. From these diagrams you can calculate in two steps how expensive it will 

probably be. 

 

 

 

 

a) In the first diagram, the fuel consumption is 

shown as a function of the distance driven. In a 

first step, you can use a ruler to draw a straight 

line through the data points. How can you 

formulate the relationship mathematically? 

 

 

 

 

 

 

b) In the second diagram, the costs of the last 

gas station visits are displayed. Here, too, you 

can formulate the relationship by means of a 

straight line.  

 

 

 

 

 

c) How can we now estimate the expected costs for the 250-kilometer  

trip using the two relationships "distance to fuel consumption"  

and "amount of fuel refueled to euros paid"? 

 

 

d) Let's assume that the gas station price for the liter of gasoline is correct. 

But now you find that you actually had to pay 75 euros for the 250 km trip. 

How big is the error and how do you correct it? 
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Solution 
a) The data points can be interpolated linearly.  

The slope can be determined by dividing distance by fuel: 

 

fuel   =     
∆fuel

∆distance
∙ distance =     

5

100
∙ distance    

 

 

 

 

b) Here, the data points can also be interpolated linearly.  

The slope can be determined by dividing distance by fuel:  

 

costs   =     
∆costs

∆fuel
    ∙     fuel     =     

80

40
∙ fuel    

 

 

 

 

 

c) To calculate the cost as a function of distance, one must concatenate the two equations: This is the chain rule! 

 

costs   =     
∆costs

∆fuel
    ∙     fuel     =     

∆costs

∆fuel
    ∙     

∆fuel

∆distance
∙ distance =     

80

40
∙

5

100
∙ distance    

To do this, multiply the two slopes together. For 250km you need 25 Euros. 

 

d) You need to calculate the error, which is: 

 

  target - output = 75 Euro – 25 Euro = 50 Euro  (“target” is the actual value, “output” is the calculated term) 

 

The first term, 
∆costs

∆fuel
,  is fixed. Therefore, we must change the second term   

∆fuel

∆distance
: 

 

costs   =     
80

40
    ∙     

∆fuel𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

∆distance
∙ distance =     

80

40
∙

15

100
∙ distance    

 

It must become bigger!  

How to do this automatically is explained in the next chapter. 

 

 

Note for the teacher:  
This result can be directly transferred to a perceptron: The error is fed back by adjusting the slope - i.e. the weighting 

factor - via the mediation of the activation function. This can be worked out in more detail in class.  
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Part III: Perceptron Backpropagation 
https://sefiks.com/2020/01/04/a-step-by-step-perceptron-example/ 

Suppose that we are going to optimize an AND Gate perceptron: 

Truth table, 
target Output 

 

Truth diagram 
 

Random 
Start-

Weights 
 

Untrained 
Perceptron 

 

A B Out 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

 

wA 

0,8 

 

wB 

0,8 

 
bias 

-0,50 
 

 

 

We are going to set weights randomly. Let’s say that  

• wA = 0.8, wB = 0.8 

• bias = -0.5 (which is correct and should not be changed, to keep the task simple) 

• learning rate = 0.2 

The optimization will take some rounds, called epochs. An epoch means that all samples are calculated once. The 

second epoch starts when all samples have been finished and are calculated the second time, and so on.  

Now let’s calculate the first epoch 
 
1.1)  As an example, the forward pass of the first sample [0, 0] is given. Here, the error is zero. 

 

2.1) Now calculate the forward pass for the second sample [0,1]. Stop the calculation when you find the first error.  

(Since we have four samples ([0,0] , [0,1], [1,0], [1,1]) and we correct each single error immediately, the so-called 

‘batch-size’ is 1.) 

A 
∙ 𝐰𝐀

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
 0.8 

 

B 
∙ 𝐰𝐁

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
0.8 

 

𝐛𝐢𝐚𝐬 

 

𝐬𝐮𝐦 
𝐨𝐮𝐭 

(step) 

 

𝐭𝐚𝐫𝐠𝐞𝐭 
error =  

target - out 

0 0 0 0 

-0.5 

-0.5 0 0 0 

0  1    0  

1  0    0  

1  1    1  

 

 

Solution: 
A ∙ 𝐰𝐀

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 

 

B ∙ 𝐰𝐁
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 

 

𝐛𝐢𝐚𝐬 

 

𝐬𝐮𝐦 𝐨𝐮𝐭 

 

𝐭𝐚𝐫𝐠𝐞𝐭 error 

0 0 0 0 
-0.5 

-0.5 0 0 0 

0 0 1 0.8 0.3 1 0 -1 

 

 Error (for first sample A = 0, B = 0)       =  actual – prediction  =  0 – 0  = -1  (no stop necessary) 

Error (for second sample A = 0, B = 1)       =  actual – prediction  =  0 – 1  = -1  (STOP) 

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

B

A

? 

? 

? 

https://sefiks.com/2020/01/04/a-step-by-step-perceptron-example/
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2.2) Backpropagation step:  

Let’s add the following correction term to the weights: error times learning rate. We set the learning rate to a value of 0.2 

(which is a so-called hyperparameter, since it has to be set and defined before the calculations):  

𝐰𝐀
𝒏𝒆𝒘,𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =       𝐰𝐀

𝒐𝒍𝒅 + 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈𝒓𝒂𝒕𝒆 ∙ 𝒆𝒓𝒓𝒐𝒓    =    𝟎. 𝟖 + 𝟎. 𝟐 ∙ (−𝟏)      =     𝟎. 𝟖 − 𝟎. 𝟐    = 𝟎. 𝟔 

𝐰𝐁
𝒏𝒆𝒘,𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =       𝐰𝐁

𝒐𝒍𝒅 + 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈𝒓𝒂𝒕𝒆 ∙ 𝒆𝒓𝒓𝒐𝒓    =    𝟎. 𝟖 + 𝟎. 𝟐 ∙ (−𝟏)      =     𝟎. 𝟖 − 𝟎. 𝟐    = 𝟎. 𝟔 

 

3.1)  Forward pass for the third sample [1,0]: 

A 
∙ 𝐰𝐀

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
 0.6 

 

B 
∙ 𝐰𝐁

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
0.6 

 

𝐛𝐢𝐚𝐬 

 

𝐬𝐮𝐦 
𝐨𝐮𝐭  

(𝐬𝐭𝐞𝐩) 

 

𝐭𝐚𝐫𝐠𝐞𝐭 
error =  

target - out 

0 0 0 0 

-0.5 

-0.5 0 0 0 

0  1    0  

1 0.6 0 0 0.1 1 0 -1 

1  1    1  

 

3.2)  Backpropagation step:  

Let’s add the following correction term to the weights: error times learning rate. We set the learning rate to a value of 0.3 

(which is a so-called hyperparameter, since it has to be set and defined before the calculations):  

𝐰𝐀
𝒏𝒆𝒘,𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =       𝐰𝐀

𝒐𝒍𝒅 + 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈𝒓𝒂𝒕𝒆 ∙ 𝒆𝒓𝒓𝒐𝒓    =    𝟎. 𝟔 + 𝟎. 𝟐 ∙ (−𝟏)      =     𝟎. 𝟔 − 𝟎. 𝟐    = 𝟎. 𝟒 

𝐰𝐁
𝒏𝒆𝒘,𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 =       𝐰𝐁

𝒐𝒍𝒅 + 𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈𝒓𝒂𝒕𝒆 ∙ 𝒆𝒓𝒓𝒐𝒓    =    𝟎. 𝟔 + 𝟎. 𝟐 ∙ (−𝟏)      =     𝟎. 𝟔 − 𝟎. 𝟐    = 𝟎. 𝟒 

 
 

4.1)  Forward pass for the fourth sample [1,1]: 

A 
∙ 𝐰𝐀

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
 0.4 

 

B 
∙ 𝐰𝐁

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
0.4 

 

𝐛𝐢𝐚𝐬 

 

𝐬𝐮𝐦 
𝐨𝐮𝐭  

(𝐬𝐭𝐞𝐩) 

 

𝐭𝐚𝐫𝐠𝐞𝐭 
error =  

target - out 

0 0 0 0 

-0.5 

-0.5 0 0 0 

0  1    0  

1  0    0  

1 0.4 1 0.4 0.3 1 1 0 

 

4.2) Backpropagation step: Not necessary since the error is zero! 

 

Students Task: calculate the second epoch 
 
Solution: 

A ∙ 𝐰𝐀
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 

 

B ∙ 𝐰𝐁
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 

 

𝐛𝐢𝐚𝐬 

 

𝐬𝐮𝐦 𝐨𝐮𝐭 

 

𝐭𝐚𝐫𝐠𝐞𝐭 error 

0 0 0 0 

-0.5 

-0.5 0 0 0 

0 0 1 0.4 -0.1 0 0 0 

1 0.4 0 0 -0.1 0 0 0 

1 0.4 1 0.4 0.3 1 1 0 

 

The error in all samples is zero, the neural network is trained perfectly and makes correct prediction in all cases.  
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Part IV: The parachute jumper model 
 

What Students should learn: 
The optimization, respectively the learning process of a neural network resembles 

a game of chance at the beginning: Because one does not know or cannot 

estimate how to set the weighting factors, only one possibility remains:  

one must guess the initial values of the weighting factors. We saw that in the 

simulations: At each restart, the start values were randomly reset. 

 

This results in various disadvantages, namely one can never ensure to get the best possible weighting values by the 

learning process. And because you don't know if there might be a better variant, you have to repeat this process 

more often:  

1. You roll the dice,  

2. run the optimization process  

3. and evaluate the result  

4. again, and again.  

 

Task 1: Where do the parachuters go? 
Since the optimization runs along a (unfortunately unknown) mathematical function, one can compare its shape with 

an unknown terrain. The diced initial values resemble a swarm of randomly dropped parachutists.  

If they land on the unknown mathematical function, their further task is simple: they always run downhill and hope 

to find the optimal lowest point of the whole terrain by their movement into the valley. This is the pictorial idea of 

the mathematical gradient descent.  

  

DALL-E 2 
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Solution 
Many of the parachutists unfortunately get only to higher 

plateaus - so called local minima. And only very few 

skydivers - if any - are granted to reach the global minimum. 

And often one must be satisfied with a local minimum as 

good as possible. 

The locations marked with a red cross are the local minima, 

the weights didn’t achieve their optimal values. 

The location in the middle marked with the green hook is 

the best value of the error function and denotes the optimal 

set of values for the weights of a neural network. 

 

Task 1: A more complicated error function 
The above model can be extended mentally and it can be imagined that the more weighting factors play a role, the 

more complicated the structure of error functions. What can be imagined pictorially is the illustrated function.  

Mark here two to three parachutists (thus random starting values) and draw their gradient descent. Where are local, 

where global minima? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 
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Lesson 8: Introduction to image classification 
 

What students should learn 
What can you do with all this theory now? One concrete application is the 

differentiation of patterns - i.e. structured inputs. It is initially irrelevant whether 

the input is sensor data, sounds or images.  

For students, however, it is more intuitive if input data is available in image form. 

In this case, didactically reduced images are selected that consist of a few pixels. 

And these pixels can even take only the two values 0 or 1. 

It is important to realize that each pixel of the image receives a corresponding 

input neuron. Images consisting of 3x3 pixels therefore need 9 input neurons. The 

more pixels an image consists of, the more input neurons are needed. 

This lesson is distinguished from CNN (convolutional neural networks), which are 

normally used for image recognition. Here an additional theoretical 

superstructure is necessary, for which the basics are laid here. 

 

 

  

Possible students’ activities 
Students must be introduced to the theory of pixel images as a first step. However, this content is not found in 
this document. Based on this, the very powerful neural network simulation of Tran Vuong Quoc Anh is introduced, 
with which the students should first familiarize themselves.  
 
By means of this simulation the already known logical functions can be retrained: AND, OR, IMPLICATION and XOR 
are repeated and deepened. The possibilities of the simulation are exhausted: On the one hand the graphical 
representation and on the other hand the tabular representation ("table input") allow different views on the 
processes. 
 
The real strength of the simulation is shown in the input possibility for own data sets. They can be typed in in 
tabular form. Furthermore, the students can freely adjust the network topology, i.e. they can choose how many 
hidden layers with how many neurons their neural network should have. 
 
Important lessons learned in your own projects should be:  

• Each image pixel needs its own input neuron.  

• Each distinguishable result needs its own output neuron. 
 
For example, if you have a 4x4 pixel image and want to distinguish 5 different images, you need 16 input neurons 
and 5 output neurons. 
 
Finished working solutions can then be saved and presented to the class. Similarly, logs of the approach are 
possible, created by the students about their projects. 
 
 

?? 

DALL-E 2 

DALL-E 2 
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Task I: Familiarize with the simulation 

Web-based version: 
https://anhcoi123.github.io/neural-network-demo/ 

Github repository for offline use: 
https://github.com/anhcoi123/neural-network-demo/ 

 

The simulation used here is web-based. The upper half contains the visualization elements, the lower half the control 

elements for setting the hyperparameters such as learning rate, iterations, batch size or training method. 

A complete introduction has to be omitted here, the students should get used to the simulation playfully by means 

of simply posed tasks. 

 

 

 

 

 

  

Node based neural 
net visualisation 

If only two inputs: 2D Diagram 
of output classification 

Possible: Table input 
of own values! 

Configuration interface for 
neural net topology 

Starting and stopping 
the training process 

Importing and exporting 
the whole configuration 

https://anhcoi123.github.io/neural-network-demo/
https://github.com/anhcoi123/neural-network-demo/
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Simple introductory Tasks 
a) Load the preset for "Binary Classifier for XOR" with the 'Load Preset' button in the upper right corner. Start the 

training with "Animate". How does the network behave during the training process if you change the activation 

functions of the individual neuron layers? 

b) Now add more points by clicking on "Add Green" or "Add Red". Try to create patterns, for example in the shape of 

a cross or a donut. What are the limits of this simple mesh topology? How many neurons do you need to add to 

distinguish even complicated patterns? 

c) Now load the preset "Bit Position Auto Encoder". Why is it no longer possible to display a diagram here, but only a 

tabular view? How do you recognize the training progress? 

 

Task II: Patterns for 4 Input neurons 
▪ design at least three different pixel patterns with 2x2 pixels.  

▪ Each pixel can be either black or white.  

▪ Then create a neural network that you train on these pixel patterns.  

Procedure:  
▪ draw the different patterns,  

▪ convert the patterns into bit sequences and create an input neuron for each element of this bit sequence.  

▪ for each possible output, a separate neuron is also created.  

▪ when the network topology is set, you can type in the values and then train it.  

▪ record your observations in writing. 

 

 

  Pattern     
Pixel- 

pattern     
Serialized  
sequence     

Coded  
letter     

Complete   
sequence 

            a,b,c,d    L X I    a,b,c,d,L,X,I 

  x      0 1    0,1,0,0    1 0 0    0,1,0,0,1,0,0 

  x x    0 0               

                       

  x      0 1    0,1,1,0    0 1 0    0,1,1,0,0,1,0 

    x    1 0               

                       

  x      0 1    0,1,0,1    0 0 1    0,1,0,1,0,0,1 

  x      0 1               
                  

 

Three different options for pixel patterns. Since there are four pixels, theoretically 24 = 16 different patterns are possible. The 

students should choose a small selection here. In an intermediate step, the pixel pattern is serialized, i.e. converted into a 1D 

array. The respective patterns get a binary representation according to the One Hot Encoding: One hot encoding creates new 

binary columns for categorical data, indicating the presence of each possible value from the original data. 
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Possible Solution: 
 

 

 

This is a possible solution for the table input. In the colums “L”, “X” and “I” of the section “Expected Output” you find the one-

hot-encoded representation of the three categories. In the actual Output you find the trained classification status of the 

network. Before you start the training process those values are randomly set. 

 

 

 

Task III: Patterns for 9 Input neurons 
 
Repeat the procedure from the previous task this time with 3x3 pixel-bitmaps. 

a) How many different patterns are possible? 

b) Take 3 or 4 possible patterns and prepare them for table input. 

c) Export the data to a csv, change the patterns, load it and train your network 

d) Let you show the weights (next to ‘Network Graph’ and ‘Error History’). Can 

you explain what you see here? 

 

 

  



50 
 

Possible Solution: 
a)  29 = 512 Patterns, some of them are useful. 

 

b) Let’s take for example the letters X, V, T and L: 

  Letter       Pixelpattern   Serialized sequence     Coded letters     Complete learning sequence   

              a,b,c,d,e,f,g,h,i    X V T L   a,b,c,d,e,f,g,h,i,X,V,T,L   

  x   x    0 1 0    0,1,0,1,0,1,0,1,0    1 0 0 0   0,1,0,1,0,1,0,1,0,1,0,0,0   

    x      1 0 1                 

  x   x    0 1 0                 

                           

  x   x    0 1 0    0,1,0,0,1,0,1,0,1    0 1 0 0   0,1,0,0,1,0,1,0,1,0,1,0,0   

  x   x    0 1 0                 

    x      1 0 1                 

                           

  x x x    0 0 0    0,0,0,1,0,1,1,0,1    0 0 1 0   0,0,0,1,0,1,1,0,1,0,0,1,0   

    x      1 0 1                 

    x      1 0 1                 

                           

  x        0 1 1    0,1,1,0,1,1,0,0,0    0 0 0 1   0,1,1,0,1,1,0,0,0,0,0,0,1   

  x        0 1 1                 

  x x x    0 0 0                 

                                            
 

 

 

c)      a,b,c,d,e,f,g,h,i,X,V,T,L 

0,1,0,1,0,1,0,1,0,1,0,0,0 

0,1,0,0,1,0,1,0,1,0,1,0,0 

0,0,0,1,0,1,1,0,1,0,0,1,0 

0,1,1,1,1,1,0,0,0,0,0,0,1 
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d)  

 

 
 
 
 
 
 
 
 
 

 

 

Each grey value of the weight map corresponds to a numerical weight factor value in the neural net. This is 

illustrated with two examples: one weight factor connecting the input and hidden layer (red arrow) and another 

weight factor connecting the hidden and the output layer (green arrow). 
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Some tasks for class tests: 
 

a) (2P) Sketch and explain with labels the basic structure of a perceptron. Explain its individual functional units and 

how they are interrelated. 

 

 

b) (4P) The logic table of the so-called 'implication' is shown on the left:  

- Create a logic diagram where you visualize the table and draw in the 

discriminator line, as we learned in class. 

- Calculate a perceptron that recognizes this logic function. 

 

 

 

c) (3P) Calculation of a neural network  

Let the neural network on the left be given. It works 

with the step function as activation. The input A is 1 and 

the input B is also 1. Calculate the output of the net for 

this input. 

 

 

 

d) (2P) For a perceptron to learn, one uses a specially designed algorithm.  

Name and describe this learning algorithm in keywords. 

 

e) (2P) Represent the following 1-bit bitmap as an array: 

 

 

 

 

f) (3P)  Construct and draw a neural network for this pixel image. This network should be able to distinguish between 

6 different pixel images. How many inputs and how many outputs does the network need?  

 

g) (2P) How could a possible network topology between input and output look like? Use the technical language for 

your description. 

  

Bit 1 
(A) 

Bit 2 
(B) 

Ergebnisbit 
(Y) 

 0 0 1 

0 1 1 

1 0 0 

1 1 1 

x    x 

 x  x  

  x   

 x  x  

x    x 



53 
 

 
a few thoughts in conclusion 
 

This course covers the fundamentals of neural networks to lay a basic and 

deeper understanding of this technology for younger students.  

 

It starts with the idea of imitating nature by means of computer science, 

builds up the computer representation of neurons by means of simple 

mathematical models and relationships, and leads to the construction of 

networks via simple tasks.  

 

 

The course ends with simple neural image recognition. A deliberate cut is 

made before the introduction of CNN (Convolutional Neural Network). 

This content is complex because it combines theories from several areas: For example, convolutional filters no longer 

belong in A.I. 

However, further courses of instruction can build on what has been achieved here: Be it autoencoders, CNNs, or 

perhaps even Transformer models. Also conceivable is a deepening in the direction of embedded systems, i.e. small 

neural networks on microcontrollers.  

The development in the field of A.I. is progressing rapidly and the development of a powerful didactics remains an 

important challenge for computer science education.  

It remains exciting! 

DALL-E 2 


